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Abstract

We show how to insert an object from one image to an-
other and get realistic results in the hard case, where the
shading of the inserted object clashes with the shading of
the scene. Rendering objects using an illumination model
of the scene doesn’t work, because doing so requires a ge-
ometric and material model of the object, which is hard to
recover from a single image. In this paper, we introduce a
method that corrects shading inconsistencies of the inserted
object without requiring a geometric and physical model or
an environment map. Our method uses a deep image prior
(DIP), trained to produce reshaded renderings of inserted
objects via consistent image decomposition inferential losses.
The resulting image from DIP aims to have (a) an albedo
similar to the cut-and-paste albedo, (b) a similar shading
field to that of the target scene, and (c) a shading that is con-
sistent with the cut-and-paste surface normals. The result
is a simple procedure that produces convincing shading of
the inserted object. We show the efficacy of our method both
qualitatively and quantitatively for several objects with com-
plex surface properties and also on a dataset of spherical
lampshades for quantitative evaluation. Our method signifi-
cantly outperforms an Image Harmonization (IH) baseline
for all these objects. They also outperform the cut-and-paste
and IH baselines in a user study with over 100 users.

1. Introduction

Inserting objects into images is an appealingly easy ren-
dering paradigm — one just moves objects from one image
into another. Applications of this task are abundant, ranging
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Figure 1. In two of these images, the spherical lampshade is produced by our method creates realistically shaded renderings from cut-and-paste
information; the other two are real photographs. Can you tell which is which? Answer in Sec 4.

from room planners to image editing for artists to training de-
tectors [33, 11]. But most insertions are not realistic because
the shading between the inserted object clashes with the tar-
get scene and the object sticks out [23]. Current state-of-the-
art (SOTA) methods recover an environment map and render
objects using their geometric and physical model [29, 15].
Current single-image methods for shape and material re-
covery cannot accurately reconstruct realistic objects (say,
a lego toy) [32]. Therefore, in this work, we focus on an
image-based insertion approach: one takes an object from
one image, inserts it into another, and expects a system to
correct it. Our method not only synthesizes plausibly re-
alistic renderings of inserted objects with complex surface
properties but also does not require a geometric or physical
model or an environment map at test time. Furthermore, it
does not require rendered images during training.

Our method, DIPR, uses Deep Image Prior [54] for re-
shading. DIPR adjusts shading so that simple inferences
are consistent with cut-and-paste predictions. The render-
ing process produces an image that is realistic, guaranteed
by our use of a deep image prior. The rendering must also
produce (a) an albedo that matches the cut-and-paste albedo,
(b) a shading that matches the target scene’s shading outside
the inserted fragment, and (c) the rendered shading and the
cut-and-paste normals are consistent with each other. The re-
sult is a simple procedure that produces convincing shading.
Our entire process, including image decomposition, does
not require any form of labeled data for training. We use an
extension of Retinex[26], build a statistical process for data
generation and train variants of image decomposition models
for DIPR. In fact, our only use of simulated ground truth is
our use of a pre-trained, off-the-shelf, normal estimator [41].
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Figure 2. We synthesize realistic, high-resolution renderings of objects added to scenes — cut from one image and pasted into another. Our
approach, DIPR, is entirely image-based and can convincingly insert objects with complex surface properties (a lego dozer, a plant and a
chair in the first row) and matte, glossy and specular objects (a set of 16 different materials in the second row; crop#5 in bottom row) added
to spatially varying illuminating scenes (indoor-outdoor, day-night) without requiring the geometry of the inserted objects or the parameters
of the target scene. Key findings from our method are (a) it appears to handle complex and subtle interaction with light; for eg., leaves
(crop#1) (b) it appears to understand 3D scene and illumination reasonably well (crop#2); CP in crop#2 looks realistic in local context,
but it isn’t capturing the 3D scene — the light source behind is far away from the plant, and (c) it preserves material properties because of a
carefully designed model; enabling object insertion without any loss of high-frequency details (crop#3 & #4).

Our experiments show DIPR convincingly inserts sev-
eral objects with complex surface properties — a lego dozer,
a plant, a chair and a set of 16 materials with different
reflective properties (Fig. 2), cars (Fig. 15) and spherical
lampshades (Fig. 7). In qualitative analysis, we show DIPR
produces convincing results compared to a SOTA image har-
monization baseline [9]. We also find that DIPR achieves
significantly better PSNR, MSE and LPIPS scores, outper-
forming a SOTA image harmonization baseline for lamp-
shades renderings (Tab. 1). We conduct user studies com-
paring our renderings against baselines and real images. We
also show our method has an implicit notion of 3D shape as
an emergent property of our consistent reshading (Fig. 11).

In summary, our main contributions are (1) we enable
deep image priors to explicitly reason about the shading of
the scene by a new class of image decomposition model.
(2) Our method can realistically insert objects without any
ground truth labeled data. The only labeled data that our
method requires is a surface normal, obtained from a pre-
trained network. Other than that, our method is completely
self-supervised. (3) Our method works for matte, glossy
and specular objects with complex surface properties and

without using explicit geometric or physical model of the
scene. (4) Our method works for diverse (indoor-outdoor,
day-night) spatially varying illuminated complex scenes.
(5) Our method produces convincing results compared to a
SOTA image harmonization baseline and achieves signifi-
cantly better PSNR, MSE and LPIPS scores. (6) Our method
has an implicit notion of 3D shape as an emergent property
of our consistent reshading.

2. Related Work

Object insertion originated with Lalonde er al. [23].
They insert objects into target images and control illumi-
nation problems by checking objects for compatibility with
targets; Bansal ef al. [1] and Lee ef al. [28] do so by match-
ing contexts. Poisson blending [43, 20] can resolve nasty
boundary artifacts, but significant illumination and color mis-
matches will cause cross-talk between target and fragment,
producing ugly results. Karsch et al. [21, 22] how convinc-
ing insertions of computer graphics (CG) objects into inverse
rendering models. Inverse rendering trained with rendered
images can produce excellent reshading of CG objects [45].



<
V7 7r

NG N > Decomposition f

Reshaded

Image

Network

& o P
Albedo  Shading Gloss

Target (it Mask Deep Image
Scene Prior (DIP)

Recons

Loss (Eq. 3)

Consistency Losses
(Eq.4,Eq.5,Eq.6)

Figure 3. DIPR overview. DIPR generates a plausibly realistic rendering of an object inserted from a source image to a target scene. DIPR
uses a DIP to generate a reshaded rendering that has consistent image decomposition inferences. The resulting rendering from DIP should
have an albedo, same as the cut-and-paste albedo; it should have a shading and gloss field that, outside the inserted fragment, is the same
as the target scene’s shading and gloss field. The rendering must have similar spherical harmonic properties as target scene and meet a
consistency test everywhere (Sec 3.4, Fig. 6). This simple procedure inserts objects convincingly in real images.

However, recovering a renderable model from an image frag-
ment is extremely difficult, particularly if the fragment has
an odd surface texture. Liao et al.[34, 35] showed that a
weak geometric model of the object can be sufficient for
correcting shading if one has strong the geometric informa-
tion about the target scene. However, we do not know about
geometry of the target scene, except for their normals.

We use image harmonization (IH) methods as a strong
baseline. IH train models to correct corrupted images where
a fragment is adjusted by some noise process (made brighter;
recolored; etc.) to the original image [52, 53, 9, 37, 18],
and so could clearly be applied here. But we find those TH
methods very often change the albedo of an inserted object,
rather than its shading. This is because they rely on ensuring
consistency of color representations across the image. In
contrast, we wish to correct shading alone.

Image Relighting: With appropriate training data, for
indoor-scenes, one can predict multiple spherical harmonic
components of illumination [15], or parametric lighting
model [14] or even full radiance maps at scene points from
images [49, 50]. For outdoor scenes, the sun’s position is
predicted in panoramas using a learning-based approach [19].
However, we do not have access to either training data with
lighting parameters/environment maps to construct such a
radiance field. Recent single-image relighting methods re-
light portrait faces under directional lighting [51, 59, 42].
Our method can relight matte, gloss and specular objects
with complex material properties like cars (Fig. 15) for both
indoor and outdoor spatially varying lighting only from a sin-
gle image and without requiring physics-based BRDF [29].

Land’s Retinex (image decomposition) model assumes
effective albedo displays sharp, localized changes (which
result in large image gradients), and that shading has small
gradients [24, 25, 26, 27]. These models require no ground
truth. An alternative is to use CG rendered images for train-
ing [30, 6, 12]. Current image decomposition evaluation
uses the weighted human disagreement rate (WHDR) [4];
current champions are [12, 13]. We use an image decompo-
sition built around approximate statistical models of albedo
and shading [13] to train our network without requiring real
image decompositions. Our method has reasonable, but not
SOTA, WHDR; but we show that improvements in WHDR
do not result in improvements in reshading (Fig. 4).

3. Approach

DIPR synthesizes a reshaded object transferred from the
source image (s) into a target scene image (t). We use a deep
image prior (DIP) [54] as a renderer to produce a reshaded
image. We enable DIP to reshade by forcing it to produce
consistent image decomposition inferences that meet certain
shading consistency tests. We use an image decomposition
trained on statistical samples of albedo, shading and gloss;
Fig. 5a and not real images (Sec 3.2), and surface normals
inferred by the method of [41] to meet the shading consis-
tency tests (Sec 3.4). The final reshaded image’s albedo
must be like the cut-and-paste albedo; the reshaded image’s
shading must match the shading of the target scene outside
the fragment; and the shading of the reshaded image must
have reasonable spherical harmonic properties and meet a
consistency test everywhere Fig. 3 summarizes our method.

3.1. Enabling DIP for object reshading

Assume we have a noisy image I;, and wish to reconstruct
the original. Write z for a random vector, and fy for a CNN
with parameters 6 and E( fy(2); I;) for a loss comparing the
image fp(z) to I;. DIP seeks

0 = argminy E(fy(2); I¢) (1)
and then reports f;(z). In this naive setup we find that
the DIP always converges to cut-and-paste image. This
is because the inconsistency we observe in cut-and-paste
images are subtle view-dependent lighting effects that are
difficult to capture using a simple DIP.

An alternative strategy is to decompose image into two
components — a persistent map, one that is invariant to light-
ing effects and a transient map, one that changes with light-
ing. We then have to train a DIP only to make corrections to
the extrinsic map and use intrinsic map as it is. To this end,
we modify Eq. | by requiring that E(-; I;) only to adjust the
extrinsic properties of the inserted object. In particular, write
g for some inference network(s), ¢, (15, I;) for inferences
constructed out of I; and the source image I;. DIPR seeks

6 = argming E(g4(fs(2)); ty (I, 11))- 2

For us, g4 is an image decomposition network, which is
pretrained and fixed.
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Figure 4. Better WHDR does not mean better reshading. We show reshaded images when using target inferences from different decomposition
models. Our decomposition achieves (relatively weak) WHDR of 19%; Paradigms [13] achieve 17%, and a supervised SOTA [30] achieve
15%. Paradigm [13] decomposition produces worse reshading. Moreover, reshading using a supervised SOTA, CGlIntrinsics[30], is worse
than ours and Paradigms decomposition. This reflects that better recovery of albedo, as measured by WHDR, does not produce better
reshading. The key issue is that methods that get low WHDR do so by suppressing small spatial details in the albedo field (for example,

the surface detail on the lego dozer), and the shading inference method cannot recover these details, and so they do not appear in the final

Paradigms [13]

rendering. From the perspective of reshading, it is better to model them as fine detail in albedo than in shading.

3.2. Image Decomposition

A natural choice for an image decomposition is an albedo
map (persistent to lighting) and a shading map (transient
to lighting). One could then use a SOTA pretrained image
decomposition network as g, only to adjust the shading of
the scene and use the cut-and-paste albedo as it is. Next, we
train DIP to reshade (DIPR) the inserted object to produce
an image with their albedo, same as the cut-and-paste albedo
and a shading field, same as the cut-and-paste image only
for the background region other than the inserted fragment.
DIPR then learns to extrapolate or interpolate shading for
the inserted fragment from the background’s shading field.

We first evaluated DIPR with two SOTA image decom-
position methods (one supervised [30] and one unsuper-
vised [13]) as measured by strong WHDR performance.
The supervised decomposition train their models on CG-
generated datasets with ground-truth supervision. [13] uses
Paradigms, a statistical model of albedo and shading, an ex-
tension of the Retinex [26]. Albedo paradigms are Mondrian
images. Shading paradigms are Perlin noise [44]. We show
these methods result in poor reshading outcomes (Fig 4).
SOTA albedo-shading decompositions get strong WHDR
performance by suppressing fine spatial details in albedo.
These methods preserve spatial and geometric details in the
shading field and not albedo because they construct albedo as
a piece-wise color constant (Mondrian) with no fine details
on them. These fine geometric details are hard to recover
accurately from a DIP when trained to interpolate the fore-

ground shading field from their background. However, [13]
offers an interesting feature in their Paradigms construction.
The statistical models used are authored. Changing the sta-
tistical properties of their models would result in a different
class of decompositions. We take advantage of this feature.
We change [13] and construct an albedo (A) — a persistent
map, a diffuse shading (S) — a multiplicative transient map
and a gloss (G) — an aditive transient map using the same
statistical process. We compose themas I = A x S+ G
to form an image and train a network to decompose them
back. Fig. 5a shows samples of our. Fig. 5b illustrates the
resulting decompositions are satisfactory on MSCOCO [36]
real images. The main difference between ours and [13] is
that we assume shading to be smooth and albedo has all the
high-frequency information so that they can be recovered
when reshading with a DIP. This is a reasonable assumption
for our method because we aim to preserve all the fine-spatial
details of inserted fragment when transferring from one im-
age to another. The additional gloss map that we use helps
us to extract better lighting representations in scenes with
strong lighting effects like shafts. We show our decomposi-
tion produces convincing object reshading when compared
to other SOTA image decomposition methods (Fig. 4).

3.3. Base Losses

We first construct the desired target albedo (A;), target
shading and gloss (S; and G;). We then train DIPR to pro-
duce an image that has reasonable albedo, shading and gloss
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Figure 5. Image decomposition. Left: samples of our albedo,
shading and gloss used to train our image decomposition network.
Right: examples showing MS COCO image decompositions.

Image, Albedo, Shading, Gloss (from top to bottom)
(b) Image Decomposition on Real Images (MS COCO)

properties. For DIPR, the input z is the cut-and-paste image
and fp is optimized to inpaint inserted fragment and also
to meet satisfactory image decomposition consistency tests.
We use U-Net with partial convolution [38, 48]. However,
we find the standard partial convolution converges to a triv-
ial solution, producing images close to cut-and-paste. To
prevent this overfitting, we flip the context for partial con-
volution. We consider the inserted object(s) as the context
and hallucinate/outpaint the entire target scene around it. We
call this flipped partial convolution. This encourages the
network not to overfit to the input cut-and-paste image.

We use CP(I,; I;; s) for an operator that cuts the frag-
ment out of the source image (/;), scales it by s, and places
it in the relevant location in the target image (/;). M for
a mask with the size of the target image that is 0 inside
the fragment and 1 outside. Our reconstruction loss for the
background is:

Lrecons = [LOM — (fo(CP(Is; In; s); M))I* (3)

We then pass the DIP rendered image through the image
decomposition network g4 making A,, S, and G, for the
rendered albedo, shading and gloss maps respectively. Our
consistent image decomposition inference losses to train
DIPR are:

Laccomp = [Acp(1.:10) — Arl® + |S:0M = S:0M|?
+ |G:oM — G.oM|*  (4)

3.4. Normal Consistency Losses

We use two normal consistency losses to make the strong
structure of a shading field apparent to a DIP’s reshading.
There is good evidence that shading (image extrinsic)is tied
across surface normals (this underlies spherical harmonic
models [32, 56]), and one should think of a surface normal as
a latent variable that explains shading or extrinsic similarities.
We assume the resulting illumination approximated with the
first 9 spherical harmonics basis coefficients (V) and does
not change when an object is inserted into a scene. We get Y
by solving the least square regression between normals (V)

Image-Level
Consistency Score

Shading Consistency Discriminator

Pixel-level Consistency Score

Figure 6. Shading consistency discriminator penalizes shading,
if it is not consistent with the cut-and-paste normals.

and shading (S) for both the target scene and the resulting
composite image. We then minimize loss (Ly) between the
target and rendered image Y (S; V) and use a Huber loss.

o {;(Y(St;Nt) —Y(Sy; Nep))?  forlYs — Y, < 1,
|Y(Se; Ni) — Y (Sp; Nop)| — & otherwise.

(%)
Spherical harmonic shading fields have some disadvantages:
every point with the same normal must have the same shad-
ing value, which results in poor models of (say) indoor shad-
ing on walls. To control this effect, we use a novel neural
shading consistency loss (L) that allows the shading field
to depart from a spherical harmonic shading field, but only
in ways consistent with past inferences. Our shading con-
sistency discriminator, ¢(S; N), is a U-Net [47] (Fig. 6);
trained to discriminate real and fake shading-normal pairs.
¢(S; N) produces two outputs: one a pixel-level map, yield-
ing the first loss term in Eq. 6, which measures per-pixel
consistency; the other an image-level value, the second term
in Eq. 6, which measures consistency for the entire image.
The L7 loss is a binary cross-entropy loss. Let m X n be the
resolution of our renderings, then £~ is given by

Lz == log((S:[i,jl; Norli, 1) —log¢(S-Ner) (6)

i=1 j=1
In summary, we update DIPR with
['7‘ - Lrecons + L"decomp + L"Y + L"Z (7)

4. Experiments

Scenes and objects. We collected about 100 diverse images
with spatially varying illumination, both indoors-outdoors,
day-night, to act as target scenes in our experiments. 25 of
these scenes are captured by placing a spherical lampshade,
which we use as ground truth for quantitative evaluation. We
first test DIPR by inserting simple 2D bright disks at various
locations in target scenes (Fig. 10). We also show reshading
results for real cars inserted into our target scenes (Fig. 15).
We also tested DIPR with complex surface properties —a lego
dozer, a plant, a chair, and a set of sixteen materials with dif-
ferent reflective properties used in NeRF [39] (Fig. 2). Other
objects from [32] are in our Appendix. We use ADE20K
validation set [58] for supplying real residual loss to our
image decomposition network and also to train our shading
consistency network. ADE20K does not have ground truth
normals and we use normals from [41].
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Figure 7. Reshading spherical lampshades. Similar to Fig. 10, we generate sphere rendering by overlaying 2D white disks over the real
sphere from the photograph. We then use DIPR to reshade the overlaid 2D disk and combine that with the actual albedo (as they remain
same irrespective of lighting) into a final rendering. IH copies average color. Our renderings are close to the ground truth (also see Tab. 1).

Network architecture. Our DIP network is very similar to
the U-Net used in 3DPhotolnpainting [48]. We use their
provided model in our implementation as DIP. The only
difference is our use of flipped partial convolution instead of
standard partial convolution as described in our Sec 3.
Training details. We used U-Net for DIP, Image Decom-
position and Shading Consistency Network. Network archi-
tecture and other training details are in our supplementary.
We update our DIP for a fixed 10k iterations and this takes
about 900 seconds using our image decomposition network
and 1600 seconds when using CGlntrinsic [30].

IH baseline. We use Cong et al.’s DoveNet [9] and their
provided pretrained model for our IH baseline.

Quantitative comparison to ground truth. We compare
25 photographs of a spherical lampshade with DIPR based
insertions. We get insertions by placing a white disk over the
lampshade, reshading the disk using DIPR, then multiplying
by lampshade’s albedo (a favorable case as it correctly ren-
dered cast shadows). We then quantitatively compare results
with ground truth (the real lampshade) using PSNR, LPIPS
or MSE (Tab. 1; Fig. 1, Fig. 7). Fig. 1 (b) and (c) are real.

Fooling users. The gold standard evaluation here is user
studies (after all, the goal is to fool people). However, user
studies are a poor way to polish a method, and a proxy would
be valuable. For images of the spherical lampshade used
in the quantitative evaluation of Tab. 1, we asked users to
identify which of the two presented images (showing distinct
scenes, but both containing the lampshade) was real. One
image presented was always a rendering, the other always
real. Users each see 16 pairs, and there were 72 participants
performing this study. Our DIPR renderings are very good
at fooling users (50% is a chance). They pick DIPR 42.7%
of the time. We then use logistic regression to predict each
rendered image’s probability of being marked real against
MSE, PSNR and LPIPS. An accurate regression would mean

Table 1. Quantitative Evaluation on Spherical Lampshades
(Fig. 7). Cases: fixed shading fields (.S is constant); fixed albedo
fields (A constant); cut-and-paste albedo fields (Acp(z,;1,;s)); im-
age harmonization (IH); and our reconstruction (S,). Note DIPR
reshading wins in all metrics. Note such comparisons to ground
truth occur in circumstances favorable to a method like ours (be-
cause the shading around the object is consistent), but we know of
no way to avoid this.

Shading (5) Albedo (A) LPIPS[57]] PSNR 1
1 1 0.0105 30.81
Sy 1 0.0070 34.26
DoveNet [9] Acp(1,:1,;9) 0.0072 35.57
RainNet [37] AcP(1,:1,:9) 0.0070 36.10
Harmony Transformer [18]  Acp(r,;1,;s) 0.0069 36.52
0.25 Acp(l,:1,:9) 0.0113 26.74
0.50 Acp(l,:1,:9) 0.0060 31.28
0.75 Acp(l,:1,;s) 0.0032 38.18
1.0 Acp(l,i1,;s) 0.0043 36.66
ST (OUFS) ACP(IE;I/_;S) 0.0021 39.53

Table 2. Ablation over losses show each helps improve reshading.

Laceomp(Bq.4) Ly (Bq.5) Lz(Bq.6) LPIPS[57]| PSNR 1

v 0.0026 37.89
v v 0.0023 38.74
v v 0.0022 39.09
v v v 0.0021 39.53

that we had a score of “realness”. However, such a model
explains almost none of the variation of the data (null de-
viance: 17.87, residual deviance: 17). This means that,
while it is pleasant that DIPR has strong MSE, PSNR, and
LPIPS scores, these scores can not be used to predict user
preferences for our task.

For other object when we did not have ground truth for
objects like cars, lego dozer, plant and chair, we conducted
another user study to compare DIPR, CP, and IH renderings.
Each study comprises a pre-qualifying process, followed



Target Scene Cp IH [9] DIPR (ours)
Figure 8. Reshading real cars. Glossy effects in car paint with
glitter in them make reshading cars a particularly challenging case
with their complex reflective properties. DIPR successfully re-
shades cars without a distinct shift in object and background color
produced by IH. Note the bright patch on the metallic bonnet of the
grey car in the top row that may possibly be because of the light
source just above it.

by 9 pair-wise comparisons, where the user is asked which
of two images are more realistic. The result is 109 pre-
qualified studies. The comparisons are balanced. Each study
is 3 DIPR-IH pairs, 3 CP-IH pairs, and 3 DIPR-CP pairs, in
random order.

We collected data from a total of 122 unique users in
500 studies from Amazon Mechanical Turk. Each study
consists of a prequalifying process, followed by 9 pair-wise
comparisons, where the user is asked which of two images
are more realistic. The prequalifying process presents the
user with five tests; each consists of an image with inserted
white spheres which are not reshaded (i.e. bright white
disks) and an image with inserted spheres which have been
reshaded (see Fig 10). We ignore any study where the user
does not correctly identify all five reshaded images, on the
grounds that the difference is very obvious and the user must
not have been paying attention.

The simplest analysis strongly supports DIPR is preferred
over both alternatives. One compares the probability that
DIPR is preferred to IH (.673, over 327 comparisons, so
standard error is .026, and the difference from 0.5 is clearly
significant); DIPR is preferred to CP (.645, over 327 com-
parisons, so the standard error is .026, and the difference
from 0.5 is clearly significant); [H is preferred to CP (.511,
over 327 comparisons, so standard error is .027, and there
is no significant difference from 0.5). An alternative is a
Bradley-Terry model [53, 9] used in IH evaluation, regress-
ing the quality predicted by the Bradley-Terry model against
the class of algorithm. This yields coefficients of O for IH,
—0.347 for CP, and 0.039 for DIPR, implying again that
DIPR is preferred over IH and strongly preferred over CP.
Consistent Instance Segmentation. We cannot quantita-
tively evaluate our reshading method when we do not know
the ground truth. But we can test whether standard image
tasks (which likely benefit from structural consistency in
images) perform better on our images. We observe image

CP DIPR CP DIPR CP DIPR
Figure 9. Instance segmentation. DIPR rendered images produce
consistent and accurate segmentation maps (bottom row). We
observe segmentation fails for cut-and-paste images often. Our
key intuition is that the instance segmentation network inherently
“knows” if the object’s placement is natural or not and expects the
foreground object to have consistent shading with the background.
If the object’s shading does not match with that of the background
then the resulting segmentation fails to segment object completely.

Target Scene Cp

IH [9] DIPR (ours)
Figure 10. Rendering spheres. DIPR has some implicit notion
of the 3D layout of the scene, which is required to choose the
appropriate shading. DIPR shades the white discs as spheres (rather
better than IH, implying it “knows” about shape; also see Fig. 11).

segmentation methods (we used [8] ) seem to prefer our im-
ages (Fig 9) compared to the naive cut-and-paste. We believe
the instance segmentation network inherently “knows” if the
object’s placement is natural or not and hence requires the
foreground object to be consistent with the background. If
not, the segmentation would produce inconsistent results.
Our findings are also consistent with Ghiasi et al.[17], who
show cut-and-paste is a strong data augmentation method for
the instance segmentation. Previous models trained without
this augmentation, such as [8] are sensitive to cut-and-paste
images if the inserted fragments contradict the background’s
shading. This suggests downstream standard image analy-
sis tasks can serve as a proxy evaluation to further polish
reshading methods and also DIPR data augmentations could
further improve various recognition tasks.

5. Shape from Shading and its Consistency

Reshadings are derived from consistent shapes. DIPR render-
ings of circles look like spheres (see Fig 10), suggesting the
method has some notion of shape. We test if our shadings are
consistent, using two procedures: a large scale using singular
values and explicit reconstruction (expensive in compute) at
a small scale. Results suggest there is indeed some emergent



notion of shape, obtained with no shape annotated data.

(a) Large scale: Imagine we have many different re-
shadings S; j of a particular inserted shape (we use white
circles in albedo). It is known that multiple shadings of
the same geometry have important similarities [3]. As-
sume that the shading value S; ;,(x) is a slowly changing
spatial function of the (unknown) normal N(x), so that
Sik(x) = Zﬁll A s (X) D (N(x). Assume here that k is
small, and a,,, ;(x) are spatially slow. These assumptions
apply to, for example, spherical harmonic shading of diffuse
surfaces [46]) and shading using the spherical gaussian ba-
sis of [29]. Now straighten each image into a vector S; .
Then these vectors span a [N, dimensional space. Form
D; = [ST,,....Sin,] (where N, > N,). We expect the
singular values o, of M; to be small for r > N if all the
S;,; are shadings of the same scene, and large if they are
not. Using these observations to make a test of consistency
requires knowing what is a “small” singular value, and what
N and N, should be. We use N; = 14 and 200 sample
points on each shading field. We now draw 10000 sets of IV
reshadings from our examples, and look at the test statistic

14
T:%. We see a mean of 0.21 and a standard deviation

0

of 7.4x10~2 for T, which appears to be normally distributed.
We compare this with a baseline of randomly chosen shading
from natural scenes (cropped to the 2D disk). This yields a
mean of 0.66 and a standard deviation of 5.9x 10~2. We con-
clude DIPR reshadings of spheres are strongly different from
random shading and display a degree of shape consistency.

(b) Explicit shape reconstruction: We produce explicit
shape of our inserted circles from their predicted shadings.
We take 7 reshaded circles, each from two different images.
From this pool of 14, we draw 7 at random, use them to drive
a shape reconstruction procedure (see Appendix; a typical
reconstruction in Fig. 11). We then compute the spherical
harmonic reshading of the resulting reconstruction that is
closest to each of the 7 held out images and record the mean
squared error of the shading residual for each. A small resid-
ual means that the shape is consistent across the reshaded
circles. Box plots of the resulting residuals for 7 different
splits of the data in Fig. 11. To calibrate, we compare this
with 3 baselines; we reshade: (1) a sphere using actual spher-
ical harmonic shading, reconstruct from reshadings, then
predict the held out reshadings (‘SphHarm’), (2) a constant
height surface (‘Const’) and (3) a surface reconstructed from
smoothed random noise shadings (‘Rand’). These residuals
and singular value analysis suggest the reshading network
has some form of shape theory as an emergent property.

6. Discussion and Conclusions

Limitations. DIPR is slow because DIP takes 15 mins to
render. DIPR cannot cast shadows; very hard and we leave
that for our future work. DIPR likely copies shading, so has
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Figure 11. Shape theory and shading consistency: On the left
a sample surface reconstruction produced by using 7 reshaded
spheres (Fig. 10). On the right, predicted shading residuals for
held out spheres’ shadings using our reconstructed shapes. The
residuals suggest: there is a consistent underlying shape. Our DIPR
residuals are small. The reconstruction process is reliable but the
underlying surface is not quite a sphere. ‘SphHarm’ residuals are
also small, but not as small as DIPR. ‘Const’ residuals are large.
Therefore, underlying surface is not flat. Smooth ‘Rand’ residuals
are large, that is, random shadings cannot explain this consistency.

DIPR (ours)

CP DIPR (ours) CP
Figure 12. Failure cases. Red arrows point to shading errors. In
first image, DIPR aggressively copies background shading onto the
chair. However, lego’s and plant’s shading looks plausible. In the
second scene, it has two dominant normals — the ground (upwards)
and the sky (towards viewer). The lack of third direction results in
copying shading either from the sky or the ground.

problems when there is little shading variation and responds
poorly when there are “few” normals in the scene (Fig. 12).
Why DIPR works? Corrections to object shading cannot be
veridical. [34, 35] finds corrected shading often fool humans
more effectively than physically accurate lighting, likely
because humans attend to complex materials much more
than to consistent lighting [5]. The alternative physics the-
ory [7] argues that the brain employs a set of rules that are
convenient, but not strictly physical and a violation leads
to perception alarm or affects recognition negatively [16].
Otherwise, the scene “looks right”. This means humans may
tolerate a fair degree of error, as long as it is of the right
kind. By requiring image to produce consistent inferences,
we appear to be forcing errors to be “of the right kind”.
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Target Scene 3

H ]
Figure 13. Reshading complex sufaces. DIPR reshades objects
with complex surface geometry and complex material properties
convincingly, and appears to preserve the identity of the material
without a distinct shift in object and background color produced by
IH.

DIPR (ours)

Images NIQE [40]4 CNN-D [55]} B-T[9]1
IH 38.39 0 0
CP 9.67 0 -0.35
DIPR (ours) 9.78 0 0.04
Target Scene 12.51 0 NA

Table 3. Additional quantitative Analysis for plants, lego, 16-set
materials and cars when no ground truth is available. We report
numbers for a no-reference image quality estimator (NIQE), a
CNN-based tampering detector (CNN-D) and Bradley-Terry (BT)
model’s analysis from the user-study. Surprisingly, NIQE is worse
for target scenes, CNN-D cannot detect any image as fake, and
from the user study between three methods, BT analysis shows our
reshaded images are preferred over CP and IH.

A. 3D Shape Reconstruction

We wish to reconstruct a shape from N images, each
showing that shape illuminated by an unknown spherical
harmonic illumination field. Illuminants are restricted to the
first nine spherical harmonics. We choose N = 7, because
preliminary experiments showed that this was the smallest
N that led to reasonably reliable reconstructions. We ig-
nore boundary conditions, and reconstruct by constructing a
surface (x,y, f(z,y)) and a set of spherical harmonic coef-

ficients a;; to minimize

7
Z | (shading predicted by f and a.;—1;) | *+1e—5smoothing term
j=1

()
where the smoothing term is the squared magnitude of the
surface gradient. Results described construct a height map
on a 128 x 128 grid. We use an approximate Newton method
(LBFGS for the Hessian approximation), and use multigrid
to accelerate convergence. This reconstruction procedure
can be dependent on the start point. We obtain a start point
from a random initialization by building a very coarse scale
reconstruction (we use 30x30) of a normal field that mini-
mizes shading error, meets boundary conditions (Augmented
Lagrangian Method) and is integrable (ALM). We then inte-
grate that normal field to yield a start point.

B. Least Square Formulation for Spherical
Harmonics Loss Ly

Consider we have kK = m x n pixels in an image, our N €
RF*3 and S € RF*1. We estimate first 9 basis (B(N) €
RF*9) from N. We can now write S = Y x B(N). The
solution for Y is then B(N)S. B(N)T is pseudo-inverse of
B(N).

C. Our Decomposition Model

Our decomposer works as follows. An encoder, with a
resnet structure, produces an image code. This is decoded
(again with a resnet structure) into an albedo field, a shading
field and a gloss field. The albedo field is colored. Shading
and gloss field are colorless. The training process accepts
albedo, shading and gloss paradigms (generated as samples
in advance and cached) and real images from [58]. The real
images are given without any of their ground truth. We use
them to ensure our image decomposition inferences when
recomposed back are able to produce an image that very
much looks like real images. We update our decomposer
with this residual loss after training with about 50k paradigm
samples.

There are four losses. The decomposer must decom-
pose a fake image (constructed out of randomly selected
albedo, shading and gloss paradigms) into its correct, known
paradigms (mixed L1/L2 loss). The albedo, shading and
gloss fields constructed from a real image using our decom-
poser must combine into that real image (mixed L1/L2 loss).
The remaining two losses are adversarial. The albedo field
constructed from a real image must fool a classifier trained to
distinguish between fake albedo fields and those constructed
from real images. Similarly, the shading field constructed
from a real image must fool a classifier trained to distinguish
between fake shading fields and those constructed from real
images.
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Figure 14. Ablation Study. We show the role of each of the loss components. Results improve from left to right (see the lego dozer). We
find neural shading consistency loss (L z) helps in improving local changes based on the near-by surroundings and spherical harmonics
matching loss (Ly) considers the overall lighting providing complementary solutions. Tab. 2 in the main text has quantitative analysis for

losses.

Target Scene ! TH [9] DIPR (ours)

Figure 15. Additional examples of reshading real cars. Glossy
effects in car paint with glitter in them make reshading cars a par-
ticularly challenging case with their complex reflective properties.
DIPR successfully reshades cars without a distinct shift in object
and background color produced by IH. Note the bright patch on the
metallic bonnet of the grey car in the top row that may possibly be
because of the light source just above it.

D. Post-Processing

Removing DIP artifacts. The input to DIPR are both the
target scene and the cut-and-paste image. We let DIP in-
paint the shading of the original target image and also the
composited image for the masked region. This is analo-
gous to rendering scenes twice with and without inserted
object [10, 21]. Doing so means the target scene’s shad-
ing field acts like a regularizer that prevents DIP copying
cut-and-paste. Furthermore, we can remove DIP (network)
specific noisy artifacts. We write I, for the target image
rendered by DIP with the object and I,,0p; for the target

Corrupted

Figure 16. Samples from iharmony dataset [9]. Image Harmoniza-
tion methods mostly deals with albedo or color correction and for
object reshading we expect only shading corrections.

Target Scene CP +Lz + Ly

Ldecomp +£Z
Figure 17. Ablation. We show more renderings of spheres from cir-
cle cut-outs (see Fig 10 in main text) in scenes exhibiting complex
lighting. Results improve moving from left to right.

scene rendered without object, we then form

(17M)®Iobj +M®(It+fobj noobj) )

High-resolution rendering. Our decomposition network
can decompose high-resolution intrinsics reliably for real
images when trained only on 128p albedo like intrinsic maps.
Since our extrinsic maps are both locally smooth and does
not have fine details in them, we can easily upsample them to
high-resolution without loss of spatial details. Thus we can
render a very high-resolution (1024p) composites, without
significant loss of geometric detail.

Ifinal =



Target Scene Cut & Paste DIPR (Ours) Cut & Paste DIPR (Ours)
Figure 18. Multiple Objects. We show multiple objects from [31] added to a scene at different location produce consistent shading that

conforms to the target scene’s lighting.

Lietal [29] DIPR (ours) Simulated GT
Figure 19. Qualitative comparison with SOTA image insertion methods with heavy supervision (which require a geometric and physical
model of the inserted objects — the bunnies — and the predicted lighting map for target scene). For the top DIPR image we use Barron’s
rendering; for the bottom, we use Gardner’s rendering. DIPR produces plausible shadings in each case, but is outperformed by methods that
have access to detailed models of illumination and surface models.

Target Scene Barron er al. [2] Gardner et al. [14]Garon et al. [15]
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